Abstract

An experimental investigation into the strain rate sensitivity of a closed-cell aluminum foam at room temperature and under compression loading is conducted. The nominal strain rates are varied by four orders of magnitude, from 3.33×10 −5 to 1.6×10 −1 s −1. Within this range, experimental results show that the plastic strength and the energy absorbed increase (by 31 and 52.5%, respectively) with increasing strain rate. However, the plastic strength was found to increase bilinearly with the logarithm of strain rate, whereas dense metals tend to show only a linear response. As is the case with dense metals, the strain rate sensitivity of the foam was not a constant value, but found to be dependent on the strain and incremental change in strain rate. These results are explained with the aid of suitable micromechanical models such as microinertial effects against the bucking of cell walls at high strain rates that are unique to foams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.