Abstract
Compressive response of a novel Fe38·5Mn20Co20Cr15Si5Cu1.5 high entropy alloy with transformation induced plasticity made by laser powder bed fusion was studied at quasi-static, medium and high strain rates. Mechanical response and variation in work hardening rate with strain rate were correlated with γ (f.c.c.) → ε (h.c.p.) martensitic transformation, subsequent phase evolution and adiabatic heating. A strong near basal {0 0 0 1} texture observed in the transformed ε (h.c.p.) phase after deformation was correlated with the initial texture, γ (f.c.c.) → ε (h.c.p.) transformation orientation relationship, as well as the activated deformation mechanisms in ε (h.c.p.) phase. The initial c/a ratio of 1.612 for the ε (h.c.p.) phase evolved with deformation and this was quantified to understand the propensity of non-basal <c+a> slip activation. Metastable γ (f.c.c.) dominant microstructure in the as-built alloy enabled excellent hardening via γ (f.c.c.) → ε (h.c.p.) transformation accompanied by activation of non-basal <c+a> slip and twinning. Experimental results were correlated with existing empirical constitutive models such as Johnson-Cook, Modified Zerilli-Armstrong, Khan-Huang-Liang and Khan-Liu; the Khan-Liu model evidenced the best correlation with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.