Abstract
In a recent work, Wyss [Phys. Rev. Lett. 98, 238303 (2007)] have noted a property of "soft solids" under oscillatory shear, the so-called strain-rate frequency superposition. We extend this study to the case of soft solids under large-amplitude oscillatory shear (LAOS). We show results from LAOS studies in a monodisperse hydrogel suspension, an aqueous gel, and a biopolymer suspension and show that constant strain-rate frequency sweep measurements with soft solids can be superimposed onto master curves for higher harmonic moduli with the same shift factors as for the linear viscoelastic moduli. We show that the behavior of higher harmonic moduli at low frequencies in constant strain-rate frequency sweep measurements is similar to that at large strain amplitude in strain-amplitude sweep tests. We show surface plots of the harmonic moduli and the energy dissipation rate per unit volume in LAOS for soft solids and show experimentally that the energy dissipated per unit volume depends on the first harmonic loss modulus alone, in both the linear and the nonlinear viscoelastic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.