Abstract

In this paper, a model for describing the influence of evolving texture on the response of pre-textured metals for dynamic loading conditions is proposed. Yielding is described using a recently developed criterion which captures simultaneously anisotropy and compression-tension asymmetry associated with deformation twinning. The anisotropy coefficients as well as the size of the elastic domain are considered to be functions of the accumulated plastic strain. The specific expressions for the evolution laws are detennined based on experimental data and numerical test results performed with a self-consistent viscoplastic model together with a macroscopic scale interpolation technique. An overstress approach is used to incorporate rate effects in the formulation. Application of the model to the description of the high-strain rate response of low-symmetry (dock-rolled hexagonal-closed-packed zirconium) is presented. The very good agreement between the simulated and experimental post-test geometries of the Taylor impact specimens in terms of major and minor side profiles and impact-interface geometries shows the ability of the model to describe the evolution of anisotropy as a function of the strain rate. shows the ability of the strain rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call