Abstract

This paper presents numerical and theoretical investigations on the strain rate in steel-concrete composite (SC) panels under low-velocity impact of a hemispherical rigid body. Finite element analyses were performed on five specimens with different loading rates. The impact energy was kept constant to eliminate its influence by simultaneously altering the velocity and mass of the projectile. Results show that the strain rate in most parts of the specimens was low and its influence on bearing capacity and energy dissipation was limited in an average sense of space and time. Therefore, the strain rate effect can be ignored for the analyses of global deformation. However, the strain rate effect should be considered in local contact problems. Equations of the local strain and strain rate were theoretically derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.