Abstract

The effect of strain rate on the work-hardening behavior of high-manganese twinning-induced plasticity (TWIP) steel has been investigated. The influence of adiabatic heating and deformation rate on the mechanical properties was studied by quasi-static and dynamic tensile tests with synchronous temperature and strain measurements. TWIP steel has excellent strain-hardening behavior under both quasi-static and dynamic loading conditions. Strain rate has negligible effects on yield and tensile strength, but the uniform and total elongation decreases under dynamic tests. TWIP steel has excellent energy absorption (EA) capacity of above 55 kJ/kg at all strain rates compared to dual-phase steels, transformation-induced plasticity steel and ferritic steels. However, the EA of TWIP steel is slightly lower compared to austenitic stainless steels. A rise in temperature due to adiabatic heating has led to the increase of stacking fault energy, thereby resulting in a change of twinning behavior or the promotion of dislocation glide under dynamic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.