Abstract

In this study the impact and quasi-static mechanical behaviour of single lap joints (SLJ) using a new crash resistant epoxy adhesive has been characterized as a function of temperature. Single lap adhesive joints were tested using a drop weight impact machine (impact tests) and using a universal test machine. Induction heating and nitrogen gas cooling was used in order to achieve a homogeneous distribution of temperature along the overlap of + 80 °C and −20 °C, respectively. Adherends made of mild steel, similar to the steel used in automobile construction, were chosen in order to study the yielding effect on the strength of the SLJ. Results showed that at room temperature (RT) and low temperature (LT), failure was dictated by the adherends due to the high strength of the adhesive. At high temperature (HT), a decrease was found in the maximum load and energy absorbed by the joint due to the reduced strength of the adhesive at this temperature. The results were successfully modelled using the commercially available finite element software Abaqus®. Good correlation was found between experimental and numerical results, which allows the reduction of experimental testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.