Abstract

Short fibre and hybrid carbon fibre PEEK composite materials were tested in tension and compression under quasi-static and high strain rate conditions to observe the strain rate dependence. Multiple temperatures including room temperature, +85 and −50 °C were used to investigate the temperature dependence of the materials. The hybrid laminate comprised a consolidated short fibre core reinforced with outer UD plies in the 0°orientation to provide maximum reinforcement whilst minimising the quantity of expensive UD composite used. Under compression, the beneficial effect of the hybridisation strategy was observed for all high-strain rate testing conditions, where the hybrid laminate outperformed the response of the individual constituents in terms of strength and strain rate dependency. The outer unidirectional (UD) layers contributed to confining the short fibre core, providing superior structural integrity. Under tension, the response was dominated by the UD layers with a 288% increase in strength at room temperature over the short fibre material. However, in the high temperature quasi-static case, the strength was dramatically reduced, by 64%, due to the debonding of the UD reinforcement. This study shows the suitability of hybrid composites for impulsive applications and provides material parameters for the future design of composite structures subjected to impact events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.