Abstract

In this paper, a model based on CEEMDAN-ARIMA is proposed to predict the strain monitoring data for bridge SHM. In view of the problem that the classical time series theory cannot predict the modal overlap-ping data effectively, the CEEMDAN method was used to decompose the strain monitoring data for the bridge SHM. To deal with the large number of components after using CEEMDAN, the PE method (permutation entropy) was used to generate a series of new data sequences according to the degree of randomness. Finally, each new data sequence was predicted and the final prediction is obtained by ARIMA model. The method was used to predict the SHM strain data of a cable-stayed bridge in Shanghai. The results show that the proposed combination method is more accurate than the classical time series theory and is promising for engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.