Abstract

BackgroundThere are few reports on the detailed biomechanics of the deltoid ligament, and no studies have measured the biomechanics of each ligamentous band because of the difficulty in inserting sensors into the narrow ligaments. This study aimed to measure the strain pattern of the deltoid ligament bands directly using a Miniaturization Ligament Performance Probe (MLPP) system.MethodsThe MLPP was sutured into the ligamentous bands of the deltoid ligament in 6 fresh-frozen lower extremity cadaveric specimens. The strain was measured using a round metal disk (clock) fixed on the plantar aspect of the foot. The ankle was manually moved from 15° dorsiflexion to 30° plantar flexion, and a 1.2-N-m force was applied to the ankle and subtalar joint complex. Then the clock was rotated every 30° to measure the strain of each ligamentous band at each endpoint.ResultsThe tibionavicular ligament (TNL) began to tense at 10° plantar flexion, and the tension becomes stronger as the angle increased; the TNL worked most effectively in plantar flex-abduction. The tibiospring ligament (TSL) began to tense gradually at 15° plantar flexion, and the tension became stronger as the angle increased. The TSL worked most effectively in abduction. The tibiocalcaneal ligament (TCL) began to tense gradually at 0° dorsiflexion, and the tension became stronger as the angle increased. The TCL worked most effectively in pronation (dorsiflexion-abduction). The superficial posterior tibiotalar ligament (SPTTL) began to tense gradually at 0° dorsiflexion, and the tension became stronger as the angle increased, with the SPTTL working most effectively in dorsiflexion.ConclusionOur results show the biomechanical function of the superficial deltoid ligament and may contribute to determining which ligament is damaged during assessment in the clinical setting.

Highlights

  • There are few reports on the detailed biomechanics of the deltoid ligament, and no studies have measured the biomechanics of each ligamentous band because of the difficulty in inserting sensors into the narrow ligaments

  • The superficial layer of the deltoid ligament is composed of four ligamentous bands, including the tibionavicular (TNL), tibiospring (TSL), tibiocalcaneal (TCL), and superficial posterior tibiotalar (SPTTL) ligaments

  • Tibionavicular ligament The tibionavicular ligament (TNL) was under the most strain in plantarflexionabduction (Fig. 5a)

Read more

Summary

Introduction

There are few reports on the detailed biomechanics of the deltoid ligament, and no studies have measured the biomechanics of each ligamentous band because of the difficulty in inserting sensors into the narrow ligaments. This study aimed to measure the strain pattern of the deltoid ligament bands directly using a Miniaturization Ligament Performance Probe (MLPP) system. The deltoid ligament has both superficial and deep layers consisting of up to six ligamentous bands [1]. Two ligamentous bands comprise the deep layer of the deltoid ligament: the deep anterior and posterior tibiotalar ligaments. There are few reports in terms of detailed biomechanics of the deltoid ligament [8–12], and no studies have directly measured the biomechanics of each ligamentous band because of the difficulty in inserting sensors into the narrow ligaments The superficial deltoid resists eversion of the hindfoot, and the deep deltoid is the primary restraint to external rotation of the talus [4,5,6,7].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.