Abstract

Strain partitioning between strike-slip faults within mountain ranges and thrust faults along their margins is a common process that accommodates oblique plate convergence in continental collision zones. In these settings accumulated strain is periodically released by earthquakes on the strain-partitioned fault systems, which threatens the densely populated foreland areas. An extreme earthquake rupture scenario in these settings is that multiple faults rupture simultaneously releasing the built up strain – an example being the 2016 Mw 7.8 Kaikoura earthquake where a cascading rupture occurred on many separate faults with different kinematics. Recent work suggests that such cascading ruptures may occur in fault systems that are coupled in the shallow crust that are being loaded by a deeper, creeping fault.   This study focuses on understanding earthquake risks in the northern Qilian strain-partitioned fault system, which is important due to the populated areas nearby. We investigate its 2-D kinematic models using available geodetic measurements under a Bayesian inversion frame. Our results prove that the kinematic models of the northern Qilian strain-partitioned fault system can be well determined, and compatible of the geological measurement and seismicity distribution. In contrast to the frequent thrust earthquakes, any thrust faults are not required to explain the available geodetic data indicating that the short-term geodetic measurements cannot reflect the thrust fault kinematics of the northern Qilian Shan in the geological time-scale. The non-thrust fault involved model also present a highly locked wedge beneath the foreland area, reconciling the supposed historical cascading earthquake ruptures in north Qilian Shan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.