Abstract

Unpredictable web temperature distributions in the dryer and strain deviations in the cross-machine (CMD) and machine (MD) directions could hamper the manufacture of smooth functional layers on polymer-based webs through the roll-to-roll (R2R) continuous process system. However, research on this topic is limited. In this study, we developed a structural analysis model using the temperature distribution of the web as a boundary condition to analyze the drying mechanism of the dryer used in an R2R system. Based on the results of this model, we then applied structural modifications to the flow channel and hole density of the aluminum plate of the dryer. The model successfully predicted the temperature and strain distributions of the web inside the dryer in the CMD and MD by forming a tension according to the speed difference of the driven rolls at both ends of the span. Our structural improvements significantly reduced the temperature deviation of the moving web inside the dryer by up to 74% and decreased the strain deviation by up to 46%. The findings can help prevent web unevenness during the drying process of the R2R system, which is essential to minimize the formation of defects on functional layers built over polymer-based webs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.