Abstract

Cesium lead halide (CsPbX3, X = Br, Cl, I) perovskite nanocrystals (NCs) possess tunable band gaps across the entire visible spectral range and are promising for various optoelectronic device applications. However, poor performance in adverse conditions limits their further development in practical optoelectronics. Herein, highly stable perovskite NCs are developed by doping europium(II) (Eu2+) into the B-site of CsPbBr3 with negligible lattice distortion/strain. Eu2+-doped CsPbBr3 NCs exhibit tunable green-to-cyan emissions, high photoluminescence quantum yield, and good resistance to harsh conditions, including ultraviolet irradiation, erosion of moisture, and corrosion of polar solvent molecules. In particular, the thermal stability of CsPbBr3 NCs after Eu2+ doping is greatly enhanced under continuous heating in air, while exhibiting the emissions of Eu2+. Furthermore, a Eu2+-doped CsPbBr3 NC-based cyan light-emitting diode is fabricated, which exhibits narrow exciton emission driven under different current densities. This work would open the avenue to develop the rational lanthanide ion doping strategy for further advancing perovskite nanomaterials toward practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.