Abstract

We report the elastically induced magnetic phase transition of FeRh thin films on BaTiO3 (001) at the successive phase transitions of BaTiO3, which is accompanied by abrupt variations of magnetization and resistance of FeRh at saturated magnetic fields. In-situ X-ray diffraction at different temperatures reveal that the compressive strains are induced accompanied by the tetragonal to orthorhombic and the orthorhombic to rhombohedral structural phase transition of BaTiO3 during cooling, due to the changes in the lattice constant and domain structure in different phases. The compressive strain further stabilizes the antiferromagnetic phase of FeRh and accounts for the magnetization and resistance changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.