Abstract

An understanding of the hierarchical nanostructure formation is of significant importance for the design of advanced functional materials. Here, we report the in situ study of lead sulfide (PbS) growth on gold (Au) nanorod seeds using liquid cell transmission electron microscopy (TEM). By tracking the formation dynamics of Au-PbS core-shell nanoparticles, we found the preferential heterogeneous nucleation of PbS on the ends of a Au nanorod prior to the development of a complete PdS shell. During PbS shell growth, drastic sulfidation of Au nanorod was observed, leading to large volume shrinkage (up to 50%) of the initial Au nanorod seed. We also captured intriguing wavy interfacial behavior, which can be explained by our DFT calculation results that the local strain gradient at the core-shell interface facilitates the mass transport and mediates reversible phase transitions of Au ↔ Au2S during the PbS shell growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.