Abstract

Accurate simulation of semiconductor nanowires (NWs) under strain is challenging, especially for bent NWs. Here, we propose a simple yet efficient unit-cell model to simulate strain-mediated bandgap modulation in both straight and bent NWs. This is with consideration that uniaxlly bent NWs experience continuous compressive and tensile strains through their cross-sections. A systematic investigation of a series of III-V and II-VI semiconductors NWs in both wurtzite and zinc blende polytypes is performed using hybrid density functional theory methods. The results reveal three common trend in bandgap evolution upon application of strain. Existing experimental measurements corroborate with our predictions concerning bandgap evolution as well as direct-indirect bandgap transitions upon strain. By examining the variation of previous theoretical studies, our result further highlights the significance of geometrical relaxtion in NW simulation. This simplified model is expected to be applicable to investigations of the electronic, optoelectronic, and sensorial properties of all semiconductor NWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.