Abstract

A micromagnetic and elastodynamic finite element model is used to compare the 180° out-of-plane magnetic switching behavior of CoFeB and Terfenol-D nanodots with perpendicular magnetic easy axes. The systems simulated here consist of 50 nm diameter nanodots on top of a 100 nm-thick PZT (Pby[ZrxTi1-x]O3) thin film, which is attached to a Si substrate. This allows voltage pulses to induce strain-mediated magnetic switching in a magnetic field free environment. Coherent and incoherent switching behaviors are observed in both CoFeB and Terfenol nanodots, with incoherent flipping associated with larger or faster applied switching voltages. The energy to flip a Terfenol-D memory element is an ultralow 22 aJ, which is 3–4 orders more efficient than spin-transfer-torque. Consecutive switching is also demonstrated by applying sequential 2.8 V voltage pulses to a CoFeB nanodot system with switching times as low as 0.2 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call