Abstract
Abstract We present a new methodology to accurately measure strain magnitudes from 3D nanodevices using Electron Backscatter Diffraction (EBSD). Because the dimensions of features on these devices are smaller than the interaction volume for backscattered electrons, EBSD patterns from 3D nanodevices will frequently be the superposition of patterns from multiple material regions simultaneously. The effect of this superposition on EBSD strain measurement is demonstrated, along with an approach to separate EBSD patterns from these devices via subtraction. The subtraction procedure is applied to 33 nm wide SiGe lines, and it provides accurate strain magnitudes where the traditional EBSD strain analysis method undervalues the strain magnitude by an order of magnitude. The approach provides a strain measurement technique for nanoscale 3D structures that is high spatial resolution, nondestructive, and accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.