Abstract
Three-dimensional Finite Element simulations of mode I crack tip fields in Compact Tension specimens are presented for elastic ideally-plastic F.C.C. single crystals. The computations are carried out within the framework of classical continuum crystal plasticity for three crack orientations: (001)[110],(110)[001] and (001)[100]. The attention is drawn on the strong differences between the plastic strain field obtained at the free surface and in the mid-section of the specimens. The results are compared, on the one hand, to analytical solutions for stationary cracks in single crystals under plane strain conditions and, on the other hand, to experimental tests on a single crystal nickel-based superalloy at room temperature. For this material, both octahedral and cube slip must be taken into account. A good agreement between experimental observations and numerical results is found in the structure of the strain localization bands observed at the free surface of (110)[001] cracked specimens. In particular, the evidence of kink banding near the crack tip is provided, confirmed by EBSD orientation mapping. The measured values of local lattice rotation are in agreement with the Finite Element prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.