Abstract

Because of the alarming expansion in the diversity and occurrence of bacteria displaying virulence and resistance to antimicrobial agents, it is increasingly important to be able to detect these microorganisms and to differentiate and identify closely related species, as well as different strains of a given species. In this study, a mass spectrometry proteomics approach is applied, exploiting lipid-based protein immobilization (LPI), wherein intact bacterial cells are bound, via membrane-gold interactions, within a FlowCell. The bound cells are subjected to enzymatic digestion for the generation of peptides, which are subsequently identified, using LC-MS. Following database matching, strain-specific peptides are used for subspecies-level discrimination. The method is shown to enable a reliable typing and identification of closely related strains of the same bacterial species, herein illustrated for Helicobacter pylori .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.