Abstract

We study effects of strain on the electronic properties of the kagome lattice in a tight-binding formalism with spin–orbit coupling (SOC). The degeneracy at the Γ point evolves into a pair of emergent tilted Dirac cones under uniaxial strain, where the anisotropy and tilting of the bands depend on the magnitude and direction of the strain field. SOC opens gaps at the emergent Dirac points, making the flatband topological, characterized by a nontrivial index. Strains of a few percent drive the system into trivial or topological phases. This confirms that moderate strain can be used to engineer anisotropic Dirac bands with tunable properties to study new phases in kagome lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.