Abstract

As a feasibility study for hydrogen storage, the adsorption behavior of H2 on transition metal-decorated N-doped graphene is systematically investigated by density functional theory and the adsorption isotherm is used to predict to practical capacity at realistic condition by grand canonical partition function. The biaxial strain is proposed to be a reversible switch for hydrogen storage. Our computational results suggest that Co-decorated N-doped graphene is a highly promising material for hydrogen gas storage with good thermal stability and excellent gravimetric density. Additionally, the adsorption of H2 is sensitive to the biaxial tensile strain, and the transition point of chemisorption/physisorption occurs under 8% strain. By applying 10% strain for desorption, the storage capacity can be effectively improved to 6.00 wt% (i.e. 19% enhancement) at low pressure and room temperature. Our findings not only reveal the feasibility of a tunable material for hydrogen storage, but also provide a new strategy to control the performance for hydrogen storage by biaxial tensile strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.