Abstract

The recent discovery of calix[3]pyrrole, a porphyrinogen-like tripyrrolic macrocycle, has provided an unprecedented strain-induced ring expansion reaction into calix[6]pyrrole. Here, we synthesized calix[n]furan[3-n]pyrrole (n=1∼3) macrocycles to investigate the reaction scope and mechanism of the ring expansion. Single crystal X-ray analysis and theoretical calculations revealed that macrocyclic ring strain increases as the number of inner NH sites increases. While calix[1]furan[2]pyrrole exhibited almost quantitative conversion into calix[2]furan[4]pyrrole within 5 minutes, less-strained calix[2]furan[1]pyrrole and calix[3]furan were inert. However, N-methylation of calix[2]furan[1]pyrrole induced a ring-expansion reaction that enabled the isolation of a linear reaction intermediate. The mechanism analysis revealed that the ring expansion consists of regioselective ring cleavage and subsequent cyclodimerization. This reaction was further utilized for synthesis of calix[6]-type macrocycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.