Abstract
We present, for the first time, an atomic-level and quantitative study of a strain-induced pseudomagnetic field in graphene nanoribbons with widths of hundreds of nanometers. We show that twisting strongly affects the band structures of graphene nanoribbons with arbitrary chirality and generates well-defined pseudo-Landau levels, which mimics the quantization of massive Dirac fermions in a magnetic field up to 160 T. Electrons are localized either at ribbon edges forming the edge current or at the ribbon center forming the snake orbit current, both being valley polarized. Our result paves the way for the design of new graphene-based nanoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.