Abstract

Particular strain geometry in graphene could lead to a uniform pseudomagnetic field of order 10T and might open up interesting applications in graphene nanoelectronics. Through quantum transport calculations of realistic strained graphene flakes of sizes of 100 nm, we examine possible means of exploiting this effect for practical electronics and valleytronics devices. First, we found that elastic backscattering at rough edges leads to the formation of well-defined transport gaps of order 100 meV under moderate maximum strain of 10%. Second, the application of a real magnetic field induced a separation, in space and energy, of the states arising from different valleys, leading to a way of inducing bulk valley polarization which is insensitive to short-range scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.