Abstract

In this study, we construct new 2D Janus MGeSN2 (M = Ti, Zr, and Hf) monolayers and systematically investigate their electronic band structures under applied biaxial strain. Their crystal lattice and electronic as well as transport properties are also examined based on the first-principles calculations and deformation potential theory. The results show that the MGeSN2 structures have good dynamical and thermal stability, and their elastic constants satisfy the criteria of Born-Huang also indicating the good mechanical stability of these materials for experimental synthesis. Our calculated results indicate that the TiGeSN2 monolayer exhibits indirect-bandgap semiconductor characteristics whereas the ZrGeSN2 and HfGeSN2 monolayers exhibit direct-bandgap semiconductor characteristics. Importantly, the biaxial strain shows significant influences on the electronic energy band structures of the monolayers in the presence of a phase transition from semiconductor to metal, which is an important feature of these materials for their application in electronic devices. All three structures exhibit anisotropic carrier mobility in both x and y transport directions, suggesting their great potential for application in electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.