Abstract
Classical molecular-dynamics simulations based on the Tersoff potential are used to compute at the atomic level the strain-induced potential well generated at the surface of the capping layer by a buried, three-dimensional Ge island on Si(001). A simple model is outlined in order to predict the configurational arrangement for the nucleation of small Ge islands in such a potential well. The theoretical predictions are compared with atomic force microscope images of multilayered SiGe nanostructures grown by chemical vapor deposition. The cluster configuration is shown to be strongly dependent on the capping layer thickness, and to closely mimic the behavior predicted by the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.