Abstract

Superconductivity in low dimensional materials and 2D electrides are topics of great interest with possible applications in next generation electronic devices. Using density functional theory (DFT) associated with Migdal-Eliashberg approach and maximally localized Wannier functions this study shows how biaxial strain affects superconductivity in a monolayer of Mo2N. Results indicate that 2D Mo2N presents strong electron-phonon coupling with large anisotropy in the superconducting energy gap. It is also proposed that, at low temperatures, a single layer of Mo2N becomes an electride with localized electron gas pockets on the surface, resembling anions adsorbed on an atomic sheet. Calculations point to Tc = 24.7 K, a record high transition temperature for this class of material at ambient pressure. Furthermore, it is shown that when biaxial strain is applied to a superconducting Mo2N monolayer, a new superconductivity gap starts at 2% strain and is enhanced by continuum strain, opening additional coupling channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.