Abstract

In bulk bicrystals strain induced grain boundary premelting (SIGBPM) occurs when heavy screw dislocation pileup can be held up to a certain high temperature, approximately 0.6TM, where TM is the melting point of bulk material in Kelvin. SIGBPM occurs at grain boundaries to which new twist component is added due to the rotation of both component crystals toward opposite direction about the axis perpendicular to the grain boundary plane. At the original grain boundary, grain boundary sliding takes place due to this relative rotation. In f.c.c. metals with relatively low stacking fault energies such as copper, nickel, brass(30Zn) and silver, dislocations dissociate into partials. Therefore high density tangled dislocations introduced during plastic deformation hardly loose. If these dislocations can be held to high temperatures, SIGBPM is promoted. Formation of static or dynamic recrystallized grains suppresses SIGBPM itself and the propagation of grain boundary cracks formed by SIGBPM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.