Abstract

Combining through-focus high-resolution transmission electron microscopy and hierarchical multiscale simulations consisting of density-functional theory, analytical empirical potentials, and continuum elastic theory we demonstrate the existence of a new dislocation type in GaN. In contrast with all previously identified or suggested dislocation structures in GaN, all core atoms are fully coordinated; i.e., no broken bonds occur, implying that the dislocation should be electrically inactive. However, as we show, the giant local strain-field around the dislocation core, in combination with the small lattice constant of GaN, causes deep defect states and thus electrically active edge dislocations independent on the specific core structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.