Abstract
We report the emergence of the D band Raman mode in single-walled carbon nanotubes under large axial strain. The D to G mode Raman intensity ratio (ID/IG) is observed to increase with strain quadratically by more than a factor of 100-fold. Up to 5% strain, all changes in the Raman spectra are reversible. The emergence of the D band, instead, arises from the reversible and elastic symmetry-lowering of the sp2 bonds structure. Beyond 5%, we observe irreversible changes in the Raman spectra due to slippage of the nanotube from the underlying substrate, however, the D band intensity resumes its original pre-strain intensity, indicating that no permanent defects are formed. Open image in new window
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.