Abstract

Systematic large strain compression measurements have been performed on polyelectrolyte hydrogels based on modified PAA crosslinked by bifunctional thiols. For compressive strains larger than a critical value depending on polymer concentration, we observed a significant hysteresis, strain-hardening and a stress plateau during unloading. This was attributed to strain-induced ionic clustering due to electrostatic interactions that can become attractive if chains are close enough to each other. This phenomenon is dynamic and reversible but a long lifetime for the clusters has been identified. Although clustering between like-charge chains has been reported for hydrogels, it is the first time that this phenomenon is caused by deformation. This effect is potentially important as we strive to understand the behaviour of all polyelectrolyte hydrogels at large strains which are highly relevant for fracture properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.