Abstract
Torsion deformation was used to investigate dislocation substructure evolution at large strains in high purity nickel and NiCo solid solutions. Observations of small strain dislocation structures formed in stage III revealed that the laminar dislocation structure observed after large strains in stage IV develops from short paired dislocation sheets within the tangled dislocations of an equiaxed cell wall. The development of these short paired dislocation sheets into long microbonds occurs gradually by a multiple-slip process in accordance with the principles of low energy dislocation structures and without the occurrence of a shear instability. The plane of these sheets and /or microbands does not correspond to a {111} slip plane. As these microbands form, a misorientation between the interior of the paired sheets and the surrounding matrix develops and increases with increasing strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.