Abstract

ObjectiveThe objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. DesignAccentuated mechanical strain was induced by applying a unidirectional force of 0.06N for 14days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results from these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. ResultsUnique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240cm−1) to inorganic (phosphate — 960cm−1) ratio, with lower average elastic modulus of 8GPa versus 12GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. ConclusionsFrom a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone–PDL–tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call