Abstract

Spatially indirect excitons are important not only for the exploration of intriguing many-body effects but also for the development of applications such as solar cells with high efficiency. This type of exciton usually exists in heterostructures. Using the generalized Bloch theorem coupled with the density-functional tight-binding method, we reveal that spatially indirect excitons may emerge in single crystalline ZnO nanowires under bending. The underlying mechanism is attributed to the formation of an effective type-II band alignment due to the strain-gradient of the bent nanowires. Our finding paves a new route to realize spatially indirect excitons by strain engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.