Abstract

Strain-gated piezotronic transistors have been fabricated using vertically aligned ZnO nanowires (NWs), which were grown on GaN/sapphire substrates using a vapor-liquid-solid process. The gate electrode of the transistor is replaced by the internal crystal potential generated by strain, and the control over the transported current is at the interface between the nanowire and the top or bottom electrode. The current-voltage characteristics of the devices were studied using conductive atomic force microscopy, and the results show that the current flowing through the ZnO NWs can be tuned/gated by the mechanical force applied to the NWs. This phenomenon was attributed to the piezoelectric tuning of the Schottky barrier at the Au-ZnO junction, known as the piezotronic effect. Our study demonstrates the possibility of using Au droplet capped ZnO NWs as a transistor array for mapping local strain. More importantly, our design gives the possibility of fabricating an array of transistors using individual vertical nanowires that can be controlled independently by applying mechanical force/pressure over the top. Such a structure is likely to have important applications in high-resolution mapping of strain/force/pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.