Abstract

Vertically stacked van der Waals heterostructures (vdW-HS) amplify the scope of 2D materials for emerging technological applications, such as nanodevices and solar cells. Here, we present a first-principles study on the formation energy and electronic properties of the heterobilayer (HBL) MoS2/ZrGe2N4, which forms a strain-free vdW-HS thanks to the identical lattice parameters of its constituents. This system has an indirect band gap with type-II band alignment, with the highest occupied and lowest unoccupied states localized on MoS2 and ZrGe2N4, respectively. Biaxial strain, which generally reduces the band gap regardless of compression or expansion, is applied to tune the electronic properties of the HBL. A small amount of tensile strain (>1%) leads to an indirect-to-direct transition, thereby shifting the band edges at the center of the Brillouin zone and leading to optical absorption in the visible region. These results suggest the potential application of HBL MoS2/ZrGe2N4 in optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.