Abstract
The BiFeO3-BaTiO3 solid solution exhibits enhanced electric properties due to its modified phase structure with relaxor characteristics and reduced leakage current. Despite these advancements, the underlying mechanism behind the phase transition from a ferroelectric to a relaxor state in BF-BT ceramics remains largely unexplored. Here, the evolution of strain in (0.67 - x)BiFeO3-0.33BaTiO3-xBi(Mg0.5Zr0.5)O3 ceramics is investigated, with a focus on the strain transition from a ferroelectric to a relaxor phase. A strengthening of relaxor behavior is observed in the modified rhombohedral (R) and pseudocubic (PC) phase structure, resulting in optimal strain (Suni = 0.25%, Spos = 0.24%) at x = 0.04. The enhanced strain is attributed to the promotion of domain switching and the presence of strong random fields, with polar nanoregions integrating into a long-range ordered matrix. Furthermore, a gradual increase in strain with rising temperature is noted, driven by increased polarization and the expansion of ferroelectric domains. This study underscores the critical role of structural modifications in augmenting the electric response of BF-BT ceramics, thereby advancing the development of lead-free piezoelectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.