Abstract
In this letter, a series of vanadium dioxide (VO2) epitaxial films were deliberately deposited on TiO2 substrates with different orientations [(001), (110), and (101)], in an attempt to gain insights into the strained VO2 epitaxial film. We found in-plane [100] and [1-10] directions, obviously anisotropic metal-insulator transition (MIT) in (110)-oriented VO2 films. In combination with synchrotron radiation high-resolution x-ray diffraction characterizations, electronic transport data reveal that the critical temperature of MIT depends on the strain state of the dimeric vanadium atomic chain along the c axis of the rutile phase. The anisotropy of MIT is closely related to the orientation of the VO2 films, which is caused by the varied orientation configuration of V-V atomic chain dimerization in the films. Soft x-ray absorption spectroscopy results further indicate that this anisotropy may be driven by the directional hybridization of O 2p and V 3d orbitals with respect to the orientation of VO2 thin films. The polarization-dependent V L-edge and O K-edge XAS data suggest that the elongation of the apical V-O bond length increases the p-d orbital overlap; thus, the energy level of the d// orbital is raised relative to that of the π* orbital. These anisotropic MIT behaviors will help us to understand how the strain engineering depends on the strain state of vanadium dimers in VO2 films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.