Abstract

An analysis of the strain in an axial nanowire superlattice shows that the dominating strain state can be defined arbitrarily between unstrained and maximum mismatch strain by choosing the segment height ratios. We give experimental evidence for a successful strain design in series of GaN nanowire ensembles with axial InxGa1-xN quantum wells. We vary the barrier thickness and determine the strain state of the quantum wells by Raman spectroscopy. A detailed calculation of the strain distribution and LO phonon frequency shift shows that a uniform in-plane lattice constant in the nanowire segments satisfactorily describes the resonant Raman spectra, although in reality the three-dimensional strain profile at the periphery of the quantum wells is complex. Our strain analysis is applicable beyond the InxGa1-xN/GaN system under study, and we derive universal rules for strain engineering in nanowire heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.