Abstract

Recent experiments evidence the direct observation of spin waves in chromium trihalides and the presence of a gap at the Dirac points of the magnon dispersion in bulk CrI3. However, the topological origin of this feature remains unclear and its emergence at the 2D limit has not yet been proven experimentally. Herein, we perform a fully self-consistent ab initio analysis to deeply understand magnetic exchange of chromium trihalides in the 2D limit. We compute the orbital dependent magnetic interactions and Curie temperatures under applied biaxial strain. Our results confirm the existence of a gap around the K high-symmetry point in the linear magnon dispersion of CrI3, which originates as a direct consequence of intralayer Dzyaloshinskii–Moriya (DM) interaction. In addition, our orbital resolved analysis reveals the microscopic mechanisms that can be exploited using strain engineering to increase the strength of the DM interaction and thus control the topological gap width in CrI3. This paves the way to the further development of this family of materials as building-blocks for topological magnonics at the limit of miniaturization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.