Abstract

AbstractSodium‐ion oxide cathodes with triphase heterostructures have attracted intensive attention, since the sodium‐storage performance can be enhanced by utilizing the synergistic effect of different phases. However, the composite structures generally suffer from multiple irreversible phase transitions and high lattice strain because of interlayer‐gliding during the charge/discharge process. Here, the concept of strain engineering via manipulating the local chemistry of heterostructured oxide cathode is proposed to regulate the relevant physical and chemical properties, resulting in highly reversible structural evolution (P2/P3/spinel → P2/P3″/spinel) and low intrinsic stress in the potential window of 1.5–4.0 V. Also, the simple structural evolution at a relatively high cut‐off potential of 4.3 V can be detected by in situ X‐ray diffraction and other electrochemical characterization techniques during Na+ extraction/insertion. Meanwhile, the electrode exhibits a high reversible capacity (169.4 mAh g−1 at 0.2 C) and excellent rate performance from 1.5 to 4.3 V. Overall, this study reveals the mechanisms of regulating local chemistry to realize strain engineering of the cathode materials and paves the way for the further improvement of high‐performance sodium‐ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.