Abstract

This paper presents the application of Gaussian Process Regression (GPR) and M5 Model Tree as two alternative data-driven modeling practices for prediction of soil liquefaction. The initial effective mean confining pressure (σ′mean), initial relative density after consolidation (Dr), percentage of fines content (FC), uniformity coefficient (Cu), Coefficient of curvature (Cc), mean grain size (D50), etc. are used as model inputs to predict strain energy density (W) required for triggering the liquefaction. The performance evaluation criteria like mean absolute relative error (MARE), coefficient of correlation (R), root mean square error (RMSE) for the validation datasets are found to be 6.381, 0.849, 0.266, respectively. Use of multiple statistical criteria and graphical plots confirmed the superiority of PuK Kernel-based Gaussian Process Regression (GPR) model over five different empirical models, two linear genetic programming (LGP)-based expressions, artificial neural network (ANN) and M5 Model Tree-based predictions. Further, a parametric sensitivity analysis performed on input parameters showed that σ′mean is the most influencing predictor to explain the variations of the capacity energy than other input parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.