Abstract

SUMMARYThis study investigates the strain energy change caused by earthquake faulting. While conventional theories often assumed uniform stress change on the fault plane, this study supposed the slip fluctuation and non-uniform stress change on the fault. By using a stochastic modelling of the slip distribution, we represent the ensemble average of the strain energy change by using the power spectral density function of the slip fluctuation. This yields the following results. (1) When the initial stress is uniform and the earthquake contains a fluctuating slip distribution, the released strain energy is less than the one by an earthquake with the uniform stress change on the fault with the same seismic moment. (2) On the other hand, when the initial stress is fluctuating, the earthquake contains a fluctuating slip distribution, and the final stress is uniform, the released strain energy is more than the one by an earthquake with the uniform stress change on the fault. (3) The stress drop becomes large due to the fluctuating slip distribution from the viewpoint of the strain energy release. We derived the analytical solution of the stress change by using the power spectral density function of the random slip fluctuation. (4) The strain energy change is proportional to the seismic moment when ${\epsilon ^2}/a \propto {( {{M_0}} )^{ - 1/3}}$ (${\epsilon ^2}$ is the variance of the fractional slip fluctuation and $a$ is the correlation distance). (5) The energy balance gives the value of initial stress that is required for the earthquake generation. In order to generate an earthquake, the initial stress needs to be larger than the sum of half of the stress drop and the apparent stress. In other words, earthquakes having rich short-wavelength components in the slip distribution are not generated under a low initial stress level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call