Abstract
The finite element modeling and fracture mechanics concept were used to study the interfacial fracture of a FRP-concrete hybrid structure. The strain energy release rate of the interfacial crack was calculated by the virtual crack extension method. It is shown that the crack growth has three phases, namely, cracking initiation, stable crack growth and unstable crack propagation. The effects of geometric and physical parameters of the hybrid beam on the energy release rate were considered. These parameters include Young’s moduli of the FRP, the concrete and the adhesive, thickness of the FRP plate and adhesive, and the distance of FRP plate end from the beam end. The numerical results show that the energy release rate of the interfacial crack is influenced considerably by these parameters. The present investigation can contribute to the mechanism understanding and engineering design of the hybrid structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.