Abstract

Based on first-principles calculations, we study systematically the ideal tensile stress-strain relations of three monoatomic group-V monolayer two dimensional (2D) materials with buckled honeycomb lattices: blue phosphorene, β-arsenene, and β-antimonene. The ideal strengths and critical strains for these 2D materials are investigated under uniaxial and equibiaxial strains. It is found that the ideal strengths decrease significantly as the atomic number increases, while the critical strains change not so much. In particular, the ideal strength of antimonene along armchair direction is found to exceed Griffith strength limit. The distributions of charge density, buckling heights, bond lengths and bond angles are also studied under different types of strains. It can be concluded that the critical strain is determined by the stretch and rotation of bonds simultaneously. Furthermore, the phonon dispersions, phonon instabilities, and failure mechanism of these materials under three types of strains are also calculated and explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.