Abstract

We have studied the effects of strain on individual self-assembled quantum dots (QDs) exemplified by InP dots embedded in GaInP. The quantum dot sample was etched from the top and in this way the amount of capping material was reduced. In a sequence of etch cycles, the cap layer was thinned, and the photoluminescence from several individual QDs could be followed as a function of cap layer thickness. The evolution of the emission spectra clearly depended on the quantum dot size. We interpret this as arising from differences in the aspect ratio for quantum dots of different sizes. The influence of the capping layer, for different QD geometries, was modeled using deformation potential theory with the strain calculated using a full three-dimensional linear elasticity model. The results agree well with the experimental observations. (Less)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call