Abstract
The electronic and magnetic properties of a material can be altered by strain engineering. We elucidate the strain dependence of electronic and magnetic properties in α-RuCl3 monolayer by varying the biaxial in-plane tensile strain from 1% to 8%. The magnetic ground state of the α-RuCl3 monolayer evolves from antiferromagnetic zigzag (AFM-ZZ) configuration to ferromagnetic (FM) under a biaxial in-plane tensile strain higher than 2%. In a strain-free state, the FM configuration has a direct bandgap of 0.54 eV, and the AFM-ZZ configuration has an indirect bandgap of 0.73 eV. The energy bandgap of the α-RuCl3 monolayer undergoes a change by the variation of the tensile strain. Furthermore, a detailed Monte Carlo simulation has been implemented to investigate the magnetic properties of the considered system for varying values of tensile strain. Temperature dependencies of the thermodynamic quantities of interest as functions of strains display strong evidence supporting the first-principles calculations within density functional theory. Our Monte Carlo findings also suggest that the Curie temperature of the α-RuCl3 monolayer tends to get higher up to 20.11 K with a tensile strain 8%, which means that applying a strain leads to getting a more stable FM ground state. In addition, we find that magnetocrystalline anisotropy in the α-RuCl3 monolayer can be controlled by the applied strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.