Abstract

We investigate the strain effect on the spin-dependent transport in a graphene junction with spin–orbit coupling and a gate voltage. We find that uniaxial strain along the armchair direction breaks the transmission probability symmetry with respect to the incident angle, reduces the spin-flipped transmission probability, and extends the transmission gap as regard to the Fermi energy, while strain along the zig-zag direction has very little effect on transmission probabilities. We analyze the spin polarization as a function of the strain magnitude, direction, voltage, and area width. Selecting the proper strain direction and magnitude for both the Klein tunneling and classical cases, the direction of the spin-polarization vector can be controlled and its magnitude is dramatically enhanced. Strain will expand the non-zero range of the magnitude of the spin-polarization vector with respect to voltage. Increasing the strain area width over a threshold, keeps the magnitude of the spin-polarization vector stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.