Abstract

BackgroundWe have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT). A newly developed three-dimensional (3-D) speckle tracking system can quantify endocardial area change ratio (area strain), which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV) segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI) can quantify dyssynchrony and predict response to CRT.MethodsWe studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35%) and QRS duration of 172 ± 30 ms (all≥120 ms) who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT.ResultsASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC) of 0.93 (p < 0.001). Two-dimensional radial dyssynchrony determined by speckle-tracking strain was also predictive of response to CRT with an AUC of 0.82 (p < 0.005). Interestingly, ASDI ≥ 3.8% was associated with the highest incidence of echocardiographic improvement after CRT with a response rate of 100% (7/7), and baseline ASDI correlated with reduction of LV end-systolic volume following CRT (r = 0.80, p < 0.001).ConclusionsASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.

Highlights

  • We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT)

  • Overall findings showed that CRT reduced left ventricular (LV) end-diastolic volume and LVESV and increased LV ejection fraction

  • There was no significant difference between responders and non-responders in the Interventricular mechanical delay (IVMD), Yu index, and 2-D radial dyssynchrony determined by speckle tracking strain (Table 1)

Read more

Summary

Introduction

We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT). A newly developed three-dimensional (3-D) speckle tracking system can quantify endocardial area change ratio (area strain), which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV) segments using complete 3-D pyramidal datasets. The objective of our study was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI) can qualify dyssynchrony and residual myocardial function, and predict response to CRT and LV reverse remodeling. This report presents both the results of our investigation and a discussion of the clinical implications

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call